1		mark	comment	b
(i)	$\begin{aligned} & 40 \times 0.6 t-5 t^{2} \\ & =24 t-5 t^{2} \end{aligned}$	M1 A1	Use of $s=u t+0.5 a t^{2}$ with $a= \pm 9.8, \pm 10$. Accept 40 or 40×0.8 for ' u '. Any form	2
(ii)	either Need zero vertical distance so $24 t-5 t^{2}=0$ so $t=0$ or $t=4.8$ or Time to highest point, T $0=40 \times 0.6-10 T$ so $T=2.4$ and time of flight is 4.8 range is $40 \times 0.8 \times 4.8=153.6$ so 154 m (3 s. f.)	M1 A1 M1 A1 M1 A1	quate their y to zero. With fresh start must have correct y. Accept no reference to $t=0$ and the other root in any form. FT their y if gives $t>0$ Allow use of $u=40$ and 40×0.8. Award even if half range found. May be awarded for doubling half range later. Horiz cpt. Accept 0.6 instead of 0.8 only if consistent with expression in (i). FT their t. cao [NB Use of half range or half time to get 76.8... ($\mathrm{g}=10$) or 78.36... $(\mathrm{g}=9.8$) scores 2] [If range formula used: M1 sensible attempt at substitution; allow $\sin 2 \alpha$ wrong B1 $\sin 2 \alpha$ correct A1 all correct A1 cao]	
		6		

2				
(i)	$\begin{aligned} & y=25 \sin \theta t+0.5 \times(-9.8) t^{2} \\ & =7 t-4.9 t^{2} \\ & x=25 \cos \theta t=25 \times 0.96 t=24 t \end{aligned}$	M1 E1 B1	Use of $s=u t+1 / 2 a t^{2}$.Accept sin, cos, $0.96,0.28$, $\pm 9.8, \pm 10, u=25$ and derivation of -4.9 not clear. Shown including deriv of -4.9 . Accept $25 \sin \theta t=7 t \mathrm{WW}$ Accept $25 \times 0.96 t$ or $25 \cos \theta t$ seen WW	3
(ii)	$\begin{aligned} & 0=7^{2}-19.6 \mathrm{~s} \\ & s=2.5 \text { so } 2.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Accept sequence of $u v a s t$. Accept $u=24$ but not 25 . Allow $u \leftrightarrow v$ and ± 9.8 and ± 10 +ve answer obtained by correct manipulation.	2
(iii)	Need $7 t-4.9 t^{2}=1.25$ so $4.9 t^{2}-7 t+1.25=0$ $\begin{aligned} & t=0.209209 \ldots \text { and } 1.219361 \ldots \\ & \text { need } 24 \times(1.219 \ldots-0.209209 \ldots) \\ & =24 \times 1.01 \ldots \text { so } 24.2 \mathrm{~m}(3 \mathrm{s.f} .) \end{aligned}$	M1 M1 A1 B1	Equate y to their (ii)/2 or equivalent. Correct sub into quad formula of their 3 term quadratic being solved (i.e. allow manipulation errors before using the formula). Both. cao. [Award M1 A1 for two correct roots WW] FT their roots (only if both positive)	4
(iv) (A) (B) (C)	$\begin{aligned} & \dot{y}=7-9.8 t \\ & \dot{y}(1.25)=7-9.8 \times 1.25=-5.25 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ Falling as velocity is negative Speed is $\sqrt{24^{2}+(-5.25)^{2}}$ $=24.5675 \ldots \text { so } 24.6 \mathrm{~m} \mathrm{~s}^{-1} \text { (3 s. f.) }$	M1 A1 E1 M1 A1	Attempt at \dot{y}. Accept sign errors and $u=24$ but not 25 Reason must be clear. FT their \dot{y} even if not a velocity Could use an argument involving time. Use of Pythag and 24 or 7 with their \dot{y} cao	5

PhysicsAndMathsTutor.com

$$
0=u-9.8 \times 3
$$

$$
u=29.4 \text { so } 29.4 \mathrm{~m} \mathrm{~s}^{-1}
$$

$$
s=0.5 \times 9.8 \times 9=44.1 \text { so } 44.1 \mathrm{~m}
$$

4
(i) $0^{2}=V^{2}-2 \times 9.8 \times 22.5$
$V=21$ so $21 \mathrm{~m} \mathrm{~s}^{-1}$
(ii) $28 \sin \theta=21$
so $\theta=48.59037 \ldots$
mark

M1 Use of appropriate uvast. Give for correct expression
E1 Clearly shown. Do not allow $v^{2}=0+2 g s$ without explanation. Accept using $V=21$ to show $s=22.5$.

M1 Attempt to find angle of projection. Allow $\sin \leftrightarrow \cos$. A1
u vast leading to u with $t=3$ or $t=6$ gns consistent
M1 uvast leading to s with $t=3$ or $t=6$ or their u
F1 FT their u if used with $t=3$. Signs consistent.
Award for 44.1, 132.3 or 176.4 seen.
[Award maximum of 3 if one answer wrong]

B1 Or equivalent (time of whole flight)

M1 Valid method for horizontal distance. Accept $1 / 2$ time.
Do not accept 28 used for horizontal speed or vertical speed when calculating time.
B1 Horizontal speed correct
A1 cao. Accept answers rounding to 79 or 80.
[If angle with vertical found in (ii) allow up to full marks in (iii). If $\sin \leftrightarrow \cos$ allow up to B1 B1 M0 A1] [If $u^{2} \sin 2 \theta / g$ used then
M1* Correct formula used. FT their angle.
M1 Dep on *. Correct subst. FT their angle. A2
cao]

5		mark		Sub
(i)	$\begin{aligned} & u=\sqrt{10^{2}+12^{2}}=15.62 . . \\ & \theta=\arctan \left(\frac{12}{10}\right)=50.1944 \ldots \text { so } 50.2(3 \mathrm{~s} \mathrm{f.}) \end{aligned}$	B1 M1 A1	Accept any accuracy 2 s. f. or better Accept $\arctan \left(\frac{10}{12}\right)$ (Or their $15.62 \cos \theta=10$ or their $15.62 \sin \theta=12$) [FT their 15.62 if used] [If θ found first M1 A1 for θ F1 for u] [If B0 M0 SC1 for both $u \cos \theta=10$ and $u \sin \theta=12$ seen]	3
(ii)	$\text { vert } \quad 12 t-0.5 \times 10 t^{2}+9$ $=12 t-5 t^{2}+9 \quad(\mathrm{AG})$ horiz $10 t$	M1 A1 E1 B1	Use of $s=u t+0.5 a t^{2}, a= \pm 9.8$ or ± 10 and $u=12$ or 15.62.. Condone $-9=12 t-0.5 \times 10 t^{2}$, condone $y=9+12 t-0.5 \times 10 t^{2}$. Condone g. All correct with origin of $u=12$ clear; accept 9 omitted Reason for 9 given. Must be clear unless $y=s_{0}+\ldots$ used.	4
(iii)	$\begin{aligned} & 0=12^{2}-20 s \\ & s=7.2 \text { so } 7.2 \mathrm{~m} \end{aligned}$	M1 A1	Use of $v^{2}=u^{2}+2 a s$ or equiv with $u=12, v=0$. Condone $u \leftrightarrow v$ From CWO. Accept 16.2.	2
(iv)	We require $0=12 t-5 t^{2}+9$ Solve for t the + ve root is 3 range is 30 m	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { F1 } \end{aligned}$	Use of y equated to 0 Attempt to solve a 3 term quadratic Accept no reference to other root. cao. FT root and their x. [If range split up M1 all parts considered; M1 valid method for each part; A1 final phase correct; A1]	4
(v)	Horiz displacement of B: $20 \cos 60 t=10 t$ Comparison with Horiz displacement of A	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	Condone unsimplified expression. Award for $20 \cos 60=10$ Comparison clear, must show $10 t$ for each or explain.	2
(vi)	vertical height is $20 \sin 60 t-0.5 \times 10 t^{2}=10 \sqrt{3} t-5 t^{2}(\mathrm{AG})$	A1	Clearly shown. Accept decimal equivalence for $10 \sqrt{3}$ (at least 3 s. f.). Accept $-5 t^{2}$ and $20 \sin 60=10 \sqrt{3}$ not explained.	1
(vii)	$\begin{aligned} & \text { Need } 10 \sqrt{3} t-5 t^{2}=12 t-5 t^{2}+9 \\ & \Rightarrow t=\frac{9}{10 \sqrt{3}-12} \\ & t=1.6915 \ldots \text { so } 1.7 \mathrm{~s}(2 \mathrm{s.f.})(\mathrm{AG}) \end{aligned}$	M1 A1 E1	Equating the given expressions Expression for t obtained in any form Clearly shown. Accept 3 s. f. or better as evidence. Award M1 A1 E0 for 1.7 sub in each ht	3
	total	19		

6	(i)	Vertical motion: $s=u t+\frac{1}{2} a t^{2}$ At water: $-1.225=0 \times t+\frac{1}{2} \times(-9.8) \times t^{2}$ $\Rightarrow t=0.5 \mathrm{~s}$	M1 A1 [2]	Condone sign errors Signs must be consistent
	(ii)	$\begin{aligned} & \text { Horizontal component of velocity }=20 \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { Vertical component }=0.5 \times 9.8=4.9 \mathrm{~m} \mathrm{~s}^{-1} \\ & \text { Speed }=\sqrt{20^{2}+4.9^{2}}=20.6 \\ & \tan \alpha=\frac{4.9}{20} \\ & \alpha=13.8^{\circ} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[5]} \end{aligned}$	Follow through for "their $t \times 9.8$ " Use of Pythagoras on previous two answers Use of an appropriate trig ratio with their figures for \mathbf{v}. Must be explicit if final answer is incorrect. Cao

7	(i)	A) (B)	Height 5 m g has been taken to be $10 \mathrm{~m} \mathrm{~s}^{-2}$	B1 B1 [2]	No units required; apply ISW if incorrect units given Allow +10 or -10 . No units required; apply ISW if incorrect units given	
	(ii)		Displacement is $\binom{150}{80}-\binom{90}{80}$ $=\binom{60}{0}$	M1 A1 [2]	Displacement must be given as a vector. Allow a description of a vector in words. Attempts at substitution for t and subtraction of vectors must be seen Cao If the candidate then goes on to give a non-vector answer of " 60 m ", apply ISW.	
	(iii)		$\begin{aligned} & x=30 t \\ & y=5+40 t-5 t^{2} \\ & y=5+40 \times\left(\frac{x}{30}\right)-5 \times\left(\frac{x}{30}\right)^{2} \\ & y=5+\frac{4}{3} x-\frac{x^{2}}{180} \end{aligned}$	B1 B1 M1 A1 [4]	Attempt to eliminate t N errors	

